Correct option is (C) \(\sqrt {3}y = x+3\)

\((x-3)^{2}+y^{2}=9 ; y^{2}=4 x\)
Tangent to \(y^{2}=4 x\)
\(y=m x+\frac{1}{m} \)
\( m^{2} x-m y+1=0 \) ....(1)
now centre of the circle \((3,0)\)
\(\left|\frac{3 m^{2}+1}{\sqrt{m^{4}+m^{2}}}\right|=3 \)
\( \left(3 m^{2}+1\right)^{2}=9\left(m^{4}+m^{2}\right)\)
\(\text {put } m^{2}=t\)
\( (3 t+1)^{2}=9\left(t^{2}+t\right) \)
\( 9 t^{2}+6 t+1=9 t^{2}+9 t \)
\( 3 t=1 \Rightarrow t=\frac{1}{3} \)
\(T: \frac{1}{3} x-\frac{1}{\sqrt{3}} y+1=0 \)
\( x-\sqrt{3} y+3-0 \Rightarrow \sqrt{3} y-x+3-0\).