Property 1.
In the addition of matrices, scalar multiplication follows distributive law, i.e., if k is an arbitrary scalar, then
k(A. + B) = kA + kB
Proof: Let A = [aij]m × n and B = [bij]m × n
∵ A + B=[aij + bij]m × n
k(A + B) = k[aij + bij]m × n„ = [kaij + kbij]m × n
= [kaij]m × n + [kbij]m × n = k[aij]m × n + k[bij]m × n
= kA + kB
Property 2.
It k and l are scalars and A = [aij]m × n is matrix, then
(k + l)A =kA + IA
Proof:
A = [aij]m × n and k and l are scalars, then
(k + l)A = (k + l) [aij] = [(k + l)aij]
= [kaij] + [laij]
= k[aij] + l[aij] = kA + IA
Thus, (k + l)A = kA + lA
Property 3.
If k and 1 are scalars and A = [aij]m × n is - matrix, then
(i) (kl)A = l(lA) = l(kA)
(ii) (- k)A = - (kA) = k(- A)
(iii) IA = A
(iv) (- 1)A = - A .
Proof :
(i) Since, k and l are scalars, so kl is also scalar then (kl) A also a matrix of order m × n. So, k(lA) and l(kA) are martices of order rn x n.
Thus, (kl)A and k(lA) are two matrices of same order m × n such that
(i) [(kl)A]ij = (kl) aij
(By the definition of scalar multiplication)
⇒ [(kl)A]ij =k(laij) (By associative multiplication)
⇒ [(kl)A]ij = k(lA)ij
(By definition of scalar multiplication)
⇒ [(kl)A]ij = [k(lA)]ij
(By definition of scalar multiplication where i = 1, 2, ........, m and j = 1, 2,..n)
Thus, by definition of equality of matrices (kl)A = k(lA)
Similarly, we can prove that
(kl)A = k(lA) = l(kA)
(ii) Putting l = -1 in (kl) A = k(lA) = l(kA)
(- k)A = k(- A) = - (kA)
(iii) Putting k = -1 in (- k) A = k(- A) = - (kA)
-1(-1)A =(-1)(-A)
= - (- 1.A) = 1A = A
∴ 1A = A
(iv) Putting k = 1 in (- k) A = k(~ A) = - (kA)
(-1) A = 1(- A) = - (1A) = - A
∴ (- 1)A = - A