First, let's calculate the magnetic reluctance (R) of the core with the air gap:
\(R = \frac{l_{\text{core}} + l_{\text{gap}}}{\mu_0 \mu_r A}\)
Since \(\mu_r\) is infinite, the term \(\mu_0 \mu_r\) becomes very large, making the reluctance R very small. Therefore, we can simplify the equation to:
\(R = \frac{l_{\text{core}} + l_{\text{gap}}}{\mu_0 A}\)
Given:-
\(l_{\text{core}} = 0\,\) negligible compared to air gap
\(l_{\text{gap}} = 2 \times 10^{-3} \, \text{m} \)
\(\mu_0 = 4\pi \times 10^{-7} \, \text{T} \cdot \text{m}/\text{A}\)
\(A = 5 \times 10^{-4} \, \text{m}^2\)
Plugging in the values:
\(R = \frac{2 \times 10^{-3}}{4\pi \times 10^{-7} \times 5 \times 10^{-4}}\)
\(R = \frac{2 \times 10^{-3}}{20\pi \times 10^{-11}}\)
\(R = \frac{10^{8}}{\pi} \, \text{A/T}\)
Next, let's use the formula for magnetic flux density B:
\(B = \frac{\mu_0 \mu_r N I}{l_{\text{core}} + l_{\text{gap}}}\)
Given:
\(B = 0.5 \, \text{T}\)
\(\mu_r = \infty\)
N = 1000
Plugging in the values:
\(0.5 = \frac{(4\pi \times 10^{-7}) \times \infty \times 1000 \times I}{2 \times 10^{-3}}\)
\(0.5 = \frac{2 \times 10^{-4} \, \text{I}}{\pi}\)
Solving for I:
\(I = \frac{0.5 \times \pi}{2 \times 10^{-4}}\)
\(I = \frac{5\pi}{2} \times 10^3 \, \text{A}\)
\(I \approx 7853.98 \, \text{A}\)
Now, once we have the current, we can calculate the coil inductance using the formula:
\(L = \frac{N^2}{R}\)
Given:
\(N = 1000 \)
\(R = \frac{10^{8}}{\pi} \, \text{A/T}\)
Plugging in the values:
\(L = \frac{1000^2}{\frac{10^{8}}{\pi}}\)
\(L = \frac{10^6 \pi}{10^8} \, \text{H}\\
L = \frac{\pi}{100} \, \text{H} \\
L \approx 0.0314 \, \text{H} \)
So, the value of current required to have an air gap flux density of 0.5 T is approximately 7853.98 A, and the coil inductance is approximately 0.0314 H.