Let \( X =\left({ }^{10} C _{1}\right)^{2}+2\left({ }^{10} C _{2}\right)^{2}+3\left({ }^{10} C _{3}\right)^{2}+\ldots .+10\left({ }^{10} C _{10}\right)^{2} \), where \( { }^{10} C _{ r }, r \in\{1,2, \ldots, 10\} \) denote binomial coefficients. Then, the value of \( \frac{1}{1430} X \) is