In this section, we use known trigonometric identities to find the integral. When the integrand involves some trigonometric functions, we use the following trigonometric identities:
- sin2x = \(\frac{1-cos2x}{2}\)
- cos2x = \(\frac{1+cos2x}{2}\)
- sin (A + B) + sin (A - B) = 2 sin A cos B
- sin (A + B) - sin (A - B) = 2 cos A sin B
- cos (A + B) + cos (A - B) = 2 cos A cos B
- cos (A - B) - cos (A + B) = 2 sin A sin B
- sin3x = \(\frac{3\ sin\ x \ - sin\ 3x}{4}\)
- cos3x = \(\frac{cos\ 3x \ + 3\ cos\ x}{4}\)
Integrals of some Particular Functions
In this section, we introduce some important formulae of integrals and apply them to evaluate many other integrals:
Expression |
Substitution |
(A) x2 + a2 |
x = a tan θ or a cot θ |
(B) x2 - a2 |
x = a sec θ or a cosec θ |
(C) a2 - x2 |
x = a sin θ or a cos θ |
(D) \(\sqrt{\frac{a-x}{a+x}} \ or \ \sqrt{\frac{a+x}{a-x}} \) |
x = a cos 2θ |
Theorem:
(i) \(\int \frac{1}{x^2 + a^2}\) dx = \(\frac{1}{a} \) tan-1 \(\frac{x}{a}\) + C
Proof:
We now prove the above results.
Putting x = a tan θ
Then dx = a sec2θ
and tan θ = x/a
or θ = tan-1x/a

(ii) \(\int \frac{1}{x^2 -a^2} dx = \frac{1}{2a} log |\frac{x-a}{x+a}| + C\)
Proof:

Alter: I = \(\int \frac{1}{x^2 - a^2} \ dx\)
Putting x = a sec θ
Then dx = a sec θ tan θ dθ
and sec θ = \(\frac{x}{a}\)
θ = sec-1 \(\frac{x}{a}\)

(iii) \(\int \frac{1}{a^2 - x^2}\ dx = \frac{1}{2a} log |\frac{a+x}{a-x}| + C\)
Proof:

(iv) \(\int \frac{1}{\sqrt{a^2 - x^2}} \) dx = sin-1 \((\frac{x}{a}) + C\)
Proof:
Let I = \(\int \frac{1}{\sqrt{a^2 - x^2}} \) dx
Putting x = a sin θ
Then dx = a cos θ dθ
and sin θ = \(\frac{x}{a}\)
or θ = sin-1 \(\frac{x}{a}\)

Similarly, by making substitution x = a cos θ, we get
\(\int \frac{1}{\sqrt{a^2 -x^2}} dx = -cos^{-1} \frac{x}{a} + C\)
(v) \(\int \frac{}{\sqrt{a^2 + x^2}}\ dx = log |x + \sqrt{a^2 + x^2}| + C\)
Proof:
Let I = \(\int \frac{1}{\sqrt{a^2 +x^2}} dx\)
Putting x = a tan θ
Then dx = a sec2 θ dθ
and tan θ = \(\frac{x}{a}\)
or θ = tan-1 \(\frac{x}{a}\)

(vi) \(\int \frac{1}{\sqrt{x^2 - a^2}}\ dx = log |x + \sqrt{x^2 - a^2}| + C\)
Proof:
Let I = \(\int \frac{1}{\sqrt{x^2 - a^2}}\ dx\)
Putting x = atan θ
Then dx = a sec θ tan θ dθ
and tan θ = \(\frac{x}{a}\)
or θ = tan-1 \(\frac{x}{a}\)
