Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
64 views
in Calculus by (78.6k points)
closed by

Integration Using Trigonometric Identities 

1 Answer

+1 vote
by (77.1k points)
selected by
 
Best answer

In this section, we use known trigonometric identities to find the integral. When the integrand involves some trigonometric functions, we use the following trigonometric identities:

  • sin2x = \(\frac{1-cos2x}{2}\)
  • cos2x = \(\frac{1+cos2x}{2}\)
  • sin (A + B) + sin (A - B) = 2 sin A cos B
  • sin (A + B) - sin (A - B) = 2 cos A sin B
  • cos (A + B) + cos (A - B) = 2 cos A cos B
  • cos (A - B) - cos (A + B) = 2 sin A sin B
  • sin3x = \(\frac{3\ sin\ x \ - sin\ 3x}{4}\)
  • cos3x = \(\frac{cos\ 3x \ + 3\ cos\ x}{4}\)

Integrals of some Particular Functions

In this section, we introduce some important formulae of integrals and apply them to evaluate many other integrals:

Expression

Substitution

(A) x2 + a2

x = a tan θ or a cot θ

(B) x2 - a2

x = a sec θ or a cosec θ

(C) a2 - x2

x = a sin θ or a cos θ

(D) \(\sqrt{\frac{a-x}{a+x}} \ or \ \sqrt{\frac{a+x}{a-x}} \)

x = a cos 2θ

Theorem:

(i) \(\int \frac{1}{x^2 + a^2}\) dx = \(\frac{1}{a} \) tan-1 \(\frac{x}{a}\) + C

Proof:

We now prove the above results.

Putting x = a tan θ

Then dx = a sec2θ

and tan θ = x/a

or θ = tan-1x/a

Integration Using Trigonometric

(ii) \(\int \frac{1}{x^2 -a^2} dx = \frac{1}{2a} log |\frac{x-a}{x+a}| + C\)

Proof:

Integration Using Trigonometric Identities

Alter: I = \(\int \frac{1}{x^2 - a^2} \ dx\)

Putting x = a sec θ

Then dx = a sec θ tan θ dθ

and sec θ = \(\frac{x}{a}\)

θ = sec-1 \(\frac{x}{a}\)

Integration Using Trigonometric Identities

(iii) \(\int \frac{1}{a^2 - x^2}\ dx = \frac{1}{2a} log |\frac{a+x}{a-x}| + C\)

Proof:

Integration Using Trigonometric Identities

(iv) \(\int \frac{1}{\sqrt{a^2 - x^2}} \) dx = sin-1 \((\frac{x}{a}) + C\)

Proof:

Let I = \(\int \frac{1}{\sqrt{a^2 - x^2}} \) dx

Putting x = a sin θ

Then dx = a cos θ dθ

and sin θ = \(\frac{x}{a}\)

or θ = sin-1 \(\frac{x}{a}\)

Integration Using Trigonometric Identities

Similarly, by making substitution x = a cos θ, we get

\(\int \frac{1}{\sqrt{a^2 -x^2}} dx = -cos^{-1} \frac{x}{a} + C\)

(v) \(\int \frac{}{\sqrt{a^2 + x^2}}\ dx = log |x + \sqrt{a^2 + x^2}| + C\)

Proof:

Let I = \(\int \frac{1}{\sqrt{a^2 +x^2}} dx\)

Putting x = a tan θ

Then dx = a sec2 θ dθ

and tan θ = \(\frac{x}{a}\)

or θ = tan-1 \(\frac{x}{a}\)

Integration Using Trigonometric Identities

(vi) \(\int \frac{1}{\sqrt{x^2 - a^2}}\ dx = log |x + \sqrt{x^2 - a^2}| + C\)

Proof:

Let I = \(\int \frac{1}{\sqrt{x^2 - a^2}}\ dx\)

Putting x = atan θ

Then dx = a sec θ tan θ dθ

and tan θ = \(\frac{x}{a}\)

or θ = tan-1 \(\frac{x}{a}\)

Integration Using Trigonometric Identities

Related questions

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...