Any function f(x, y) is said to be homogeneous function of power n, if f(λx, λy) = λn f(x, y), where X is a non-zero constant.
For example,
For f(x, y) = x3 + y3 + x2y + xy2
f(λx, λy) = (λx)3 + {λy)3 + (λx)2(λy) + (λx)(λy)2
= λ3x3 + λ3y3 + λ3x2y + λ3xy2
= λ3 (x3 + y3 + x2y + xy2)
= λ3f(x,y)
Hence, function f(x, y) is a homogeneous function of degree 3.
Similarly, F(x,y) = 3x + 4y
And H(x, y) = tan \((\frac{x}{y})\)
For F(λx, λy) = 3λx + 4(λy)
= λ(3x + 4y) = λ ≠ F(x, y)
Hence, F(x, y) is a homogeneous function of degree 1.
And H(λx, λy) = tan \((\frac{\lambda x}{\lambda y})\) = tan \((\frac{ x}{ y})\)
= λ° tan \((\frac{ x}{ y})\) (∵ λ° = 1)
Hence, H(x, y) is a homogenerous function of degree 0.
Now, for the function G(x, y) = sec x + tan y
G(λx, λy) = sec (λx) + tan (λy)
≠ λ(sec x + tan y)
∴ G(λx, λy) ≠ λG(x, y)
Hence, function G(x, y), is not homogeneous function.

Hence, we can write a homogeneous function of degree in the following way :
f(x, y) = xn f \((\frac{ y}{ x})\) 1 or f(x, y) = yn \((\frac{ x}{ y})\)