(4+3i)/(1-i)^3 = ?
(1-i)^3 = 1 - (i)^3 - 3(1)(i){ 1 - i }
= 1 + i - 3i - 3 = -2( 1 + i )
Now (4+3i)/(1-i)^3 = (4+3i)/[-2(1+i)] = -{ 2(1+i) + (2+i) }/[2(1+i)]
= -1 - (2+i)/[2(1+i)] = -1 - { (2+i) (1-i) } /[2(1+i) (1-i)] = -1 - { 2 -2i + i - (i)(i) } /[2(1- i^2) ]
= -1 - { 3 -i }/[2(2) ] = -1 - 3/4 + 1/4(i) = -1.75 + 0.25i