\(I = \int \frac{\sin^8 x - \cos ^8c}{1 - 2\sin^2x \cos^2x}\)
\(\sin^8x -\cos^8x = (\sin^4x + \cos^4x) (\sin^4x-\cos^4x)\)
\(= (1 - 2\sin^2x \cos^2x) (\sin^2x + \cos^2x)\)
\(= (1 - 2\sin^2x \cos^2x) (-\cos2x)\)
\(\therefore I = \int \frac{(1 - 2\sin^2x\cos^2x) (-\cos 2x)}{1-2\sin^2x \cos^2x}dx\)
\(= \int (-\cos2x)dx\)
\(= - \frac 12 \sin 2x + C\)