The sum of the first n terms of an arithmetic progression (A.P.) is given by:
\(S_n = \frac{n}{2} (2A + (n - 1)D)\)
where A is the first term and D is the common difference.
For n = 20:
\(S_{20} = \frac{20}{2} (2A + 19D) = 790\)
10(2A + 19D) = 790
2A + 19D = 79 ............(i)
For n = 10:
\(S_{10} = \frac{10}{2} (2A + 9D) = 145\)
5(2A + 9D) = 145
2A + 9D = 29 ............(ii)
We can subtract Equation 2 from Equation 1:
(2A + 19D) − (2A + 9D) = 79 − 29
10D = 50
D = 5
Substitute D=5 back into Equation 2:
2A + 9(5) = 29
2A + 45 = 29
2A = 29 − 45
2A = −16
A = −8
For S15:
\(S_{15} = \frac{15}{2}(2A + 14D)\)
\(= \frac{15}{2} (2(-8) + 14(5))\)
\(= \frac{15}{2} (-16 + 70)\)
\(\frac{15}{2} \times 54 = 15 \times 24 = 405\)
For S5:
\(S_5 = \frac{5}{2}(2A + 4D)\)
\(= \frac{5}{2} (2(-8) + 4(5))\)
\(= \frac{5}{2} (-16 + 20) \)
\(= \frac{5}{2} \times 4 = 5 \times 2 = 10\)
S15 − S5
= 405 − 10
= 395