Correct option is (4) 1
\( \mathrm{A}=\left[\begin{array}{cc}
1 & -\alpha \\
\alpha & \beta
\end{array}\right] \) \(\mathrm{AA}^{\mathrm{T}}=\mathrm{I}_2 \)
\( \Rightarrow\left[\begin{array}{cc}
1 & -\alpha \\
\alpha & \beta
\end{array}\right]\left[\begin{array}{cc}
1 & \alpha \\
-\alpha & \beta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \)
\(\Rightarrow\left[\begin{array}{cc}
1+\alpha^2 & \alpha-\alpha \beta \\
\alpha-\alpha \beta & \alpha^2+\beta^2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \)
\( \Rightarrow \alpha^2=0 \,\& \,\beta^2=1\)
\( \therefore \alpha^4+\beta^4=1\)