S = 2x2 + 3xy - 2y2 - 7x + y + 3 = 0
Consider, 2x2 + 3xy - 2y2 = 0
⇒ (x + 2y) (2x - y) = 0
⇒ x + 2y = 0, 2x - y = 0
Now, (x + 2y + c1) (2x - y + c2) ≡ S
Comparing coefficient of x & y
2c1 + c2 = -7, 2c2 - c1 = 1
⇒ c2 = -1, c1 = -3
Equation of lines perpendicular to S = 0 & passing through (3, -4) are
2x - y + k1 = 0, x + 2y + k2 = 0
passes through (3, -4)
⇒ 6 + 4 + k1 = 0, 3 - 8 + k2 = 0
⇒ k1 = -10, k2 = 5
Lines are 2x - y - 10 = 0,

