Let two known lines are
\(\overrightarrow r = \overrightarrow {a_1} + \lambda \overrightarrow {b_1}\) ........(1)
and \(\overrightarrow r = \overrightarrow {a_2} + \lambda \overrightarrow {b_2}\) .....(2)

Line (1) passes through the point A, whose position vector is \(\overrightarrow {a_1}\) and is parallel to \(\overrightarrow {b_1}\)
Line (2) passes through the point B, whose position \(\overrightarrow {a_2}\) and is parallel to \(\overrightarrow {b_2}\)
\(\overrightarrow {AB} = \overrightarrow {a_2} - \overrightarrow {a_1}\)
The given lines will be coplanar if and only if \(\overrightarrow {AB} \) is perpendicular to \(\overrightarrow {b_1} \times \overrightarrow {b_2}.\)

Cartesian Form:
Let coordinates of points A and B are (x1 y1 z1) and (x2, y2, z2) respectively and direction ratios of \(\overrightarrow {b_1} \ and\ \overrightarrow {b_2}\) are a1 b1 c1 and a2, b2, c2 respectively.
Then \(\overrightarrow {AB} \) = (x2 - x1)î + (y2 - y1) ĵ + (z2 - z1) k̂
\(\overrightarrow {b_1}\) = a1î + b1 ĵ + c1k̂
and \(\overrightarrow {b_1}\) = a2î + b2 ĵ + c2k̂
The given lines are coplanar if and only if
