(i) f(- 1) = 3-(-1) - 1
= 31 - 1 = 3 - 1 = 2
∴ f(- 1) = 2
(ii) f(π/6) = tan \(\frac{\pi/6}{2}\) = tan \((\frac{\pi}{12})\) [∵ 0 < π / 6/ π]
= tan 15° = 2 - √3
(iii) f \((\frac{2\pi}{3})\) = tan \((\frac{2\pi}{3 \times 2})\) = tan \(\frac{\pi}{3}\) [∵ 0 < 2π/3 < π]
= \(\sqrt3\)
(iv) f(4) = \(\frac{4}{4^2-2} = \frac{4}{16 -2} = \frac{4}{14} = \frac{2}{7}\) = [∵ 0 < (4) < 6]
[∵ x lies in = 4, [π , 6]
(v) f(6) = \(\frac{6}{6^2-2} = \frac{6}{36 -2} = \frac{6}{34} = \frac{3}{17}.\)
[∵ x lies in = 6, [π , 6]