We have
tan θ = - 1
tan θ = tan 135°
tan θ = tan (180° + 135°)
tan θ = tan 135° or tan 315°
θ = 135° or 315° ......... (i)
Again for equation cos θ = \(\frac{1}{\sqrt2}\)
cos θ = cos 45° or cos(360° - 45°)
cos θ = 45° or cos θ = 315°
θ = 45° or 315° ............ (ii)
Taking common value in equation (j) and (ii)
θ = 315° = \(\frac{7\pi}{4}\)
Thus, general value of θ = 2nπ + \(\frac{7\pi}{4}\), n ∈ Z