Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
88 views
in Differential Equations by (15 points)
solve the following equation: dy/dx+2y=e^x(3sinx+2cos2x)

Please log in or register to answer this question.

1 Answer

0 votes
by (55 points)

Step 1: Identify the standard form

The equation is already in the standard form:

\(\begin{aligned} \frac{dy}{dx} + P(x)y = Q(x) \end{aligned}\)

where:

\(\begin{aligned} P(x) = 2, \quad Q(x) = e^x(3\sin x + 2\cos 2x) \end{aligned}\)

Step 2: Find the integrating factor (IF)

The integrating factor is given by:

 \(\begin{aligned} \text{IF} = e^{\int P(x) \, dx} = e^{\int 2 \, dx} = e^{2x} \end{aligned}\).

Step 3: Multiply through by the integrating factor

Multiply the entire equation by e2xe^{2x}:

\(\begin{aligned} e^{2x} \frac{dy}{dx} + 2e^{2x}y = e^{2x} \cdot e^x(3\sin x + 2\cos 2x) \end{aligned}\)

Simplify:

\( \begin{aligned} \frac{d}{dx}(e^{2x}y) = e^{3x}(3\sin x + 2\cos 2x) \end{aligned} \)

Step 4: Integrate both sides

Integrate the equation:

\( \begin{aligned} e^{2x}y = \int e^{3x}(3\sin x + 2\cos 2x) \, dx \end{aligned} \)

Step 5: Solve the integral

Split the integral:

\( \begin{aligned}  \int e^{3x}(3\sin x + 2\cos 2x) dx = 3 \int e^{3x}\sin x dx + 2 \int e^{3x}\cos 2x \, dx \end{aligned} \)

(a) Solve \( \begin{aligned} \int e^{3x} \sin x dx \end{aligned} \)

Let \( \begin{aligned} \int e^{3x} \sin x dx \end{aligned} \) Use integration by parts:

\( \begin{aligned} \int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2}(a \sin bx - b \cos bx) \end{aligned} \)

Here, \( a = 3 \) and \( b = 1 \):

\( \begin{aligned} I_1 = \frac{e^{3x}}{3^2 + 1^2}(3 \sin x - 1 \cos x) = \frac{e^{3x}}{10}(3\sin x - \cos x) \end{aligned} \)

(b) Solve \( \begin{aligned} \int e^{3x} \cos 2x dx \end{aligned} \)

Let \( \begin{aligned} I_2 = \int e^{3x} \cos 2x dx \end{aligned} \) Again, use the formula for \( \begin{aligned} \int e^{ax} \cos bx dx \end{aligned} \):

\( \begin{aligned} \int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2}(a \cos bx + b \sin bx) \end{aligned} \)

Here, \( a = 3 \) and \( b = 2 \):

\( \begin{aligned} I_2 = \frac{e^{3x}}{3^2 + 2^2}(3 \cos 2x + 2 \sin 2x) = \frac{e^{3x}}{13}(3\cos 2x + 2\sin 2x) \end{aligned} \)

Step 6: Combine results

Now, substitute \( I_1 \) and \( I_2 \) back into the integral:

\( \begin{aligned} \int e^{3x}(3\sin x + 2\cos 2x) dx = 3 \cdot \frac{e^{3x}}{10}(3\sin x - \cos x) + 2 \cdot \frac{e^{3x}}{13}(3\cos 2x + 2\sin 2x) \end{aligned} \)

Simplify:

\( \begin{aligned} \int e^{3x}(3\sin x + 2\cos 2x) dx = \frac{9e^{3x}}{10}(3\sin x - \cos x) + \frac{2e^{3x}}{13}(3\cos 2x + 2\sin 2x) \end{aligned} \)

Step 7: Solve for \(y\)

Substitute back into:

\( \begin{aligned} e^{2x}y = \int e^{3x}(3\sin x + 2\cos 2x) dx + C \end{aligned} \)

So:

\( \begin{aligned} y = e^{-2x} \left[\frac{e^{3x}}{10}(3\sin x - \cos x) + \frac{2e^{3x}}{13}(3\cos 2x + 2\sin 2x) + C\right] \end{aligned} \)

Simplify:

\( \begin{aligned}y = \frac{e^x}{10}(3\sin x - \cos x) + \frac{2e^x}{13}(3\cos 2x + 2\sin 2x) + Ce^{-2x} \end{aligned} \)

No related questions found

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...