f(x) = y = tan-1( sqrt(1+x2) +x )
tany = sqrt(1+x2) +x
differentiating w.r. to x
sec2y (dy/dx) = (2x)/(2sqrt(1+x2) ) + 1 = x/sqrt(1+x2) + 1
= [ ( x + sqrt(1+x2))/ sqrt(1+x2) ]... Eqn 1
now sec2y = 1 + tan2y = 1 + [ sqrt(1+x2) +x ]2 = 1 + [(1+x2) + x2 + 2x sqrt(1+x2)]
= 2x2 + 2x sqrt(1+x2) + 2 = 2 [x2 + x sqrt(1+x2) + 1 ] = 2sqrt(1+x2)[ sqrt(1+x2) + x]
substituting in Eqn 1
2sqrt(1+x2)[ sqrt(1+x2) + x] (dy/dx) = [ ( x + sqrt(1+x2))/ sqrt(1+x2) ]
(dy/dx) = 1/[ 2(1+x2)]