Correct option is (3) 0
\(\text {I.F. }=e^{\int e^x\left(x^2-2\right) d x}\)
\(=e^{\int e^x\left(x^2-2 x+2 x-2\right)} d x\)
\(=e^{e^x\left(x^2-2 x\right)}\)
\(\text {y. } e^{e^x\left(x^2-2 x\right)}\)
\(=\int \mathrm{e}^{e^x\left(x^2-2 x\right)} e^x\left(x^2-2 x\right)\left(x^2-2\right) e^x d x\)
Let \(e^x\left(x^2-2 x\right)=t\)
So, \(y^{e^{x^2\left(x^2-2 x\right)}}=\int \mathrm{e}^t . t \mathrm{dt}\)
\(\text {At } x=0, t=0\)
\( x=2, t=0 \)
\(=t \cdot e^{\prime}-e^t+c\)
\(x=0 ; 0 \cdot 1\)
\(=0-1+c \Rightarrow c=1\)
\(\text {for } x=2 ; y \cdot 1=0-1+1=0\)
\(y(2) = 0\).