Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
71 views
in Mathematics by (50.3k points)
closed by

Co-ordinates of incentre of the triangle formed having vertices \((1, \sqrt{3}),\) (0, 0) and (2, 0) are

(A) \(\left(1, \frac{\sqrt{3}}{2}\right)\)

(B) \(\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)\)

(C) \(\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)\)

(D) \(\left(1, \frac{1}{\sqrt{3}}\right)\)

1 Answer

+1 vote
by (54.3k points)
selected by
 
Best answer

Correct option is (D) \(\left(1, \frac{1}{\sqrt{3}}\right)\)  

Let \(A(1, \sqrt3), \ B(0, 0), \ C(2, 0)\) be the vertices of a triangle ABC

\(a = BC = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)   

\(= \sqrt{(2-0)^2 + (0-0)^2} \)

\(= \sqrt{(2)^2}\)

= 2

\(b = AC = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)  

\(= \sqrt{(2-1)^2 + (0-\sqrt3)^2} \)  

\(= \sqrt{(1)^2 + (\sqrt3)^2}\)   

\(=\sqrt{1+3}\)   

\(=\sqrt{4}\)  

= 2

and \(c = AB = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)   

\(= \sqrt{(0-1)^2 + (0-\sqrt3)^2} \)    

\(= \sqrt{(1)^2 + (\sqrt3)^2}\)   

\(=\sqrt{1+3}\)   

\(=\sqrt{4}\)   

= 2

\(\therefore\) The triangle is an equilateral triangle.

\(\therefore\) Incentre is same as centroid of the triangle.

\(\Rightarrow\) Co - ordinates of incentre are 

\((\frac{1+0+2}{3}, \frac{\sqrt3+0+0}{3})\)

\(=(\frac{3}{3}, \frac{\sqrt3}{3})\)

\(=(1, \frac{1}{\sqrt3})\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...