Correct option is (D) \(\left(1, \frac{1}{\sqrt{3}}\right)\)
Let \(A(1, \sqrt3), \ B(0, 0), \ C(2, 0)\) be the vertices of a triangle ABC
\(a = BC = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)
\(= \sqrt{(2-0)^2 + (0-0)^2} \)
\(= \sqrt{(2)^2}\)
= 2
\(b = AC = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)
\(= \sqrt{(2-1)^2 + (0-\sqrt3)^2} \)
\(= \sqrt{(1)^2 + (\sqrt3)^2}\)
\(=\sqrt{1+3}\)
\(=\sqrt{4}\)
= 2
and \(c = AB = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)
\(= \sqrt{(0-1)^2 + (0-\sqrt3)^2} \)
\(= \sqrt{(1)^2 + (\sqrt3)^2}\)
\(=\sqrt{1+3}\)
\(=\sqrt{4}\)
= 2
\(\therefore\) The triangle is an equilateral triangle.
\(\therefore\) Incentre is same as centroid of the triangle.
\(\Rightarrow\) Co - ordinates of incentre are
\((\frac{1+0+2}{3}, \frac{\sqrt3+0+0}{3})\)
\(=(\frac{3}{3}, \frac{\sqrt3}{3})\)
\(=(1, \frac{1}{\sqrt3})\)