\(\frac{sec\, \theta\, +\, tan\, \theta}{sec\, \theta\, -\, tan\, \theta}\)
= \(\frac{sec\, \theta\, +\, tan\, \theta}{sec\, \theta\, -\, tan\, \theta}\) \(\times\) \(\frac{sec\, \theta\, +\, tan\, \theta}{sec\, \theta\, +\, tan\, \theta}\)
= \(\frac{(sec\, \theta\, +\, tan\, \theta)^2}{sec^2\, \theta \, - \, tan^2\, \theta}\)
= \(\frac{sec^2 \, \theta\, +\, tan^2 \, \theta \,+\,2\, sec\, \theta\, tan\,\theta}{1}\) [sec2 θ − tan2 θ = 1]
= 1 + tan2θ + tan2θ + 2 secθ tanθ
= 1 + 2tan2θ + 2 secθ tanθ