Correct option is (2) \(\frac{1105 \pi^2}{68} \text{and} \frac{4 \pi^2}{17}\)
\(f(x)=\left(4 \sec ^{-1} x\right)^2+\left(\operatorname{cosec}^{-1} x\right)^2\)
\(=\left(4 \sec ^{-1} x+\operatorname{cosec}^{-1} x\right)^2-8 \sec ^{-1} x \operatorname{cosec}^{-1} x\)
\(=\left(3 \sec ^{-1} x+\frac{\pi}{2}\right)^2-8 \sec ^{-1} x\left[\frac{\pi}{2}-\sec ^{-1} x\right]\)
\(=9\left(\sec ^{-1} x\right)^2+\frac{\pi^2}{4}+3 \pi \sec ^{-1} x-4 \pi \sec ^{-1} x+ 8\left(\sec ^{-1} x\right)^2 \)
\(=17\left(\sec ^{-1} x\right)^2=\pi\left(\sec ^{-1} x\right)+\frac{\pi^2}{4} \)
\(=17\left[\left(\sec ^{-1} x\right)^2-\frac{\pi}{17}\left(\sec ^{-1} x\right)+\frac{\pi^2}{34^2}\right]+\frac{\pi^2}{4}-\frac{17 \pi^2}{34^2} \)
\(=17\left[\left(\sec ^{-1} x-\frac{\pi}{34}\right)^2\right]+\frac{\pi^2}{4}-\frac{\pi^2}{68}\)
\(=17\left[\left(\sec ^{-1} x-\frac{\pi}{34}\right)^2\right]+\frac{4 \pi^2}{17}\)
\(M in=\frac{4 \pi^2}{17}\)
Max if \(\sec ^{-1} x=x\)
\(17\left[\left(\pi-\frac{\pi}{34}\right)^2\right]+\frac{4 \pi^2}{17}\)
\(\frac{1089}{68} \pi^2+\frac{4 \pi^2}{17}=\frac{1105 \pi^2}{68}\)