Correct option is (2) \(\pi\)
\(2 \sin ^2 \theta=\cos 2 \theta\)
\(2 \cos ^2 \theta=3 \sin \theta\)
\(\Rightarrow\) Adding,
\(2= 1-2 \sin ^2 \theta+3 \sin \theta \)
\(\Rightarrow 2 \sin ^2 \theta-3 \sin \theta+1=0 \)
\(2 \sin ^2 \theta-2 \sin \theta-\sin \theta+1=0 \)
\(2 \sin \theta(\sin \theta-1)-1(\sin \theta-1)=0 \)
\(\sin \theta=1, \frac{1}{2} \text { but } 2 \sin ^2 \theta=\cos 2 \theta=2\)
but not is not possible
\(\Rightarrow \theta=\frac{\pi}{6},\left(\pi-\frac{\pi}{6}\right)\)
\(\Rightarrow\) Sum of all values \(=\frac{\pi}{6}+\pi-\frac{\pi}{6}=\pi\)