Answer is "1"
\(f(x)=\left(7 \tan ^6 x-3 \tan ^2 x\right) \sec ^2 x\)
\(I_1=\int_0^{\frac{\pi}{4}}\left(7 \tan ^6 x-3 \tan ^2 x\right) \sec ^2 x d x\)
Let \(\tan \mathrm{x}=\mathrm{t}\)
\(=\int_0^1\left(7 t^6-3 t^4\right) d t=\left.\left(t^7-t^3\right)\right|_0 ^1=0\)
