\(\vec{a} \times \vec{b}+\vec{a} \times \vec{c}+\vec{b} \times \vec{c}=(1,8,13)\)
\(\vec{a} \times(\vec{a} \times \vec{b})+\vec{a} \times(\vec{a} \times \vec{c})+\vec{a} \times(\vec{b} \times \vec{c})\)
\(=\overrightarrow{\mathrm{a}} \times(\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+13 \hat{\mathrm{k}})\)
\((\vec{a} \cdot \vec{b}) \vec{a}-a^{2} \vec{b}+(\vec{a} \cdot \vec{c}) \vec{a}-a^{2} \vec{c}+(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k})\)
\(\Rightarrow-26 \vec{a}-29 \vec{b}+13 \vec{a}-29 \vec{c}+13 \vec{b}+26 \vec{c}=\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k})\)
\(\Rightarrow -13 \vec{a}-16 \vec{b}-3 \vec{c}=\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k})\)
\(\Rightarrow -13 \vec{a} \cdot \vec{b}-16 b^{2}-3 \vec{b} \cdot \vec{c}=\{\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k})\} \cdot \vec{b}\)
\(\Rightarrow (-13)(-26)-16(50)-3 \vec{b} \cdot \vec{c}=\left|\begin{array}{ccc}2 & -3 & 4 \\ 1 & 8 & 13 \\ 3 & 4 & -5\end{array}\right|\)
\(\Rightarrow -462-3 \vec{b} \cdot \vec{c}=-396\)
\(\Rightarrow \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=-22\)
Hence \(24-\vec{b} \cdot \vec{c}=46\)