Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
84 views
in Differential Equations by (15 points)
(ii) यदि \( y=(\sin x)^{\tan x} \), तो \( \frac{d y}{d x} \) ज्ञात कीजिए। [8]

Please log in or register to answer this question.

1 Answer

0 votes
by (55 points)
\[
\begin{aligned}
y &= \left(\sin x \right)^{\tan x} \\[2.0ex]
\ln y &= \tan x \cdot \ln (\sin x) \\[2.0ex]
\frac{1}{y} \frac{dy}{dx} &= \left(\frac{d}{dx} (\tan x) \right) \cdot \ln (\sin x) + \tan x \cdot \left(\frac{d}{dx} (\ln (\sin x)) \right) \\[2.0ex]
\frac{1}{y} \frac{dy}{dx} &= \sec^2 x \cdot \ln (\sin x) + \tan x \cdot \frac{\cos x}{\sin x} \\[2.0ex]
\frac{1}{y} \frac{dy}{dx} &= \sec^2 x \cdot \ln (\sin x) + 1 \\[2.0ex]
\frac{dy}{dx} &= y \cdot \left(\sec^2 x \cdot \ln (\sin x) + 1 \right) \\[2.0ex]
\frac{dy}{dx} &= (\sin x)^{\tan x} \cdot \left(\sec^2 x \cdot \ln (\sin x) + 1 \right)
\end{aligned}
\]

No related questions found

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...