\(\frac{1}{1 + x^4}\)
= \(\frac{\frac{1}{x^2}} {x^2 + \frac{1}{x^2}}\)
= \(\frac{1}{2} \times \frac{1 + \frac{1}{x^2} - (1 - \frac{1}{x^2})}{x^2 + \frac{1}{x^2}}\)
= \(\frac{1}{2} \times [\frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} - \frac{1 - \frac{1}{x^2}}{x^2 + \frac{1}{x^2}}]\)
= \(\frac{1}{2} [\frac{1 + \frac{1}{x^2}}{x - \frac{1}{x^2} +2} - \frac{1 - \frac{1}{x^2}}{(x + \frac{1}{x})^2 - 2}]\)