Correct option is (1) 675
\(S_n=\sum_{K=1}^n \frac{4}{K^2+5 K+6}\)
\(=\sum_{K=1}^n \frac{4}{(K+2)(K+3)}=4 \sum_{K=1}^n\left(\frac{1}{K+2}-\frac{1}{K+3}\right)\)
\(=4\left[\frac{1}{3}-\frac{1}{4}\right]\)
\(=4\left[\frac{1}{4}-\frac{1}{5}\right]\)
\(=4\left[\frac{1}{n+2}-\frac{1}{n+3}\right]\)
\(S_n=4\left[\frac{1}{3}-\frac{1}{n+3}\right]\)
\(S_{2025}=4\left[\frac{1}{3}-\frac{1}{2028}\right]\)
\(S_{2025}=4\left[\frac{675}{2028}\right]\)
\(507 \ S_{2025}=675\)