Correct option is (1) \(\frac{5}{3}\)
\(\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{k^3+6 x^2+11 k+6-1}{(k+3)!} \)
\(=\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{(k+1)(k+2)(k+3)-1}{(k+3)!} \)
\(=\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{1}{k!}-\frac{1}{(k+3)!} \)
\(=\left(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots \infty\right)-\left(\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!}+\cdots \infty\right) \)
\(=(e-1)-\left(e-1-\frac{1}{1!}-\frac{1}{2!}-\frac{1}{3!}\right) \)
\(=1+\frac{1}{2}+\frac{1}{6}=\frac{10}{6}=\frac{5}{3}\)