Correct option is (1) Equivalence relation
\(x R y \Rightarrow \sec ^2 x-\tan ^2 y=1\)
- \(x R x \Rightarrow \sec ^2 x-\tan ^2 x=1\)
\(\Rightarrow R\) is reflexive
- \(x R y \Rightarrow y R x \)
\(\Rightarrow \sec ^2 x-\tan ^2 y=1 \)
\(\sec ^2 y-\tan ^2 x=\left(1+\tan ^2 y\right)-\left(\sec ^2 x-1\right) \)
\(=2 \sec ^2 x+\tan ^2 y \)
\(=2-\left(\sec ^2 x-\tan ^2 y\right)=2-1=1\)
\(\Rightarrow R\) is symmetric
- \(x R y \Rightarrow y R z\)
\(\Rightarrow \sec ^2 x-\tan ^2 y=1\)
\(\sec ^2 y-\tan ^2 z=1\)
Add \(\Rightarrow \sec ^2 x+\sec ^2 y-\tan ^2 y-\tan _z^2=2\)
\(\Rightarrow \sec ^2 x+(1)-\tan ^2 z=2 \)
\(\Rightarrow \sec ^2 x-\tan ^2 z=1 \)
\(\Rightarrow x R z\)
\(\Rightarrow R\) is transitive.