Answer is "186"
\(\frac{2 x^2-9 x+4}{x^2-4 x+5}>0\) ....(i)
\(x-1>0, x-1 \neq 1 \)
\( \Rightarrow (2 x-1)(x-4)>0\)

\(\therefore x \in(4, \infty) \)
\(\therefore \alpha=4 \)
\(\log 5\left(18 x-x^2-77\right) \)
\(\Rightarrow 18 x-x^2-77>0 \)
\(\Rightarrow x^2-18 x+77<0 \)
\(\Rightarrow(x-7)(x-11)<0 \)
\(x \in(7,11) \)
\( \therefore \beta=7, \gamma=11 \)
\(\therefore \alpha^2+\beta^2+\gamma^2 \)
= 16 + 49 + 121
= 186