The given integral is
\(\int \frac{cos x dx}{sin^2 x + 3 sin x + 2}\)
\(= \int \frac{dt}{t^2 + 3t + 2}\)
Let t = sin x
dt = cos x dx
\(= \int \frac{dt}{(t + 1)(t+2)}\)
\(= \int (\frac{1}{t + 1} - \frac{1}{t + 2}) dt\)
\(= log |\frac{t +1}{t+2}| + c\)
\(= log |\frac{sinx + 1}{sinx + 2}| + c\)