Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
36 views
in Mathematics by (54.3k points)
closed by

If the points A(1, -2), B(2, 3), C(-3, 2) and D(-4, -3) are the vertices of a parallelogram ABCD then considering AB as the base find the height of the parallelogram.

1 Answer

+1 vote
by (50.3k points)
selected by
 
Best answer

Given, the point A(1, -2), B(2, 3), C(-3, 2) and D(-4, -3) form a parallelogram.

The area of a triangle with vertices \(A\left(x_1, y_1\right), B\left(x_2, y_2\right)\) and \(c\left(x_3, y_3\right)\) is.

\(\frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]\)  

Here, \(\left(x_1, y_1\right)=(1,-2),\left(x_2, y_2\right)=(2,3)\) and \(\left(x_3, y_3\right)=(-3,2)\)  

Area of \(\triangle ABC = \frac{1}{2}\left[x_1\left(y_2-y_3\right)+x_2\left(y_3-y_1\right)+x_3\left(y_1-y_2\right)\right]\)  

\(=\frac{1}{2}[1(3-2)+2(2-(-2))+(-3)(-2-3)] \)  

\(=\frac{1}{2}[1(1)+2(2+2)-3(-5)] \)  

\(=\frac{1}{2}[1+8+15] \)  

\(=\frac{1}{2} \times 24\)

= 12 square units. 

Now, the area of parallelogram ABCD =2 x area of triangle ABC

\(=2 \times 12\)

= 24 square units.

Base = AB

The distance between two points \(P\left(x_1, y_1\right)\) and \(Q\left(x_2, y_2\right)\) is  \(\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)  

Distance between \(A(1,-2)\) and \(B(2,3)\)  

\(=\sqrt{(2-1)^2+(3-(-2))^2} \)

\(=\sqrt{(1)^2+(3+2)^2} \)

\(=\sqrt{(1)^2+(5)^2} \)

\(=\sqrt{1+25} \)

\(=\sqrt{26}\)

We know that area of parallelogram = base x height

\(24 =\sqrt{26} \times \text { height } \)

\(\text { Height } =\frac{24}{\sqrt{26}}\)

Therefore, the height of the parallelogram is \(\frac{24}{\sqrt{26}}\) units.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...