Correct option is (3) \(\frac{2}{3}\)
\(\mathrm{T}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}\)
\(\Rightarrow \mathrm{T}_{\mathrm{n}}=\frac{1}{8}(2 \mathrm{n}-1)(2 \mathrm{n}+1)(2 \mathrm{n}+3)\)
\(\Rightarrow \frac{1}{\mathrm{~T}_{\mathrm{n}}}=\frac{8}{(2 \mathrm{n}-1)(2 \mathrm{n}+1)(2 \mathrm{n}+3)}\)
\(\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{T_{r}}=\lim _{n \rightarrow \infty} 8 \sum_{r=1}^{n} \frac{1}{(2 n-1)(2 n+1)(2 n+3)}\)
\(=\lim _{n \rightarrow \infty} \frac{8}{4} \sum\left(\frac{1}{(2 n-1)(2 n+1)}-\frac{1}{(2 n+1)(2 n+3)}\right)\)
\(=\lim _{n \rightarrow \infty} 2\left[\left(\frac{1}{1.3}-\frac{1}{3.5}\right)+\left(\frac{1}{3.5}-\frac{1}{5.7}\right)+\ldots\right]\)
\(=\frac{2}{3}\)