Correct option is (2) 2525
\(f(x+y)=f(x) f^{\prime}(y)+f^{\prime}(x) f(x)\)
Put = x = y = 0
\(f(0)=f(0) f^{\prime}(0)+f^{\prime}(0) f(0)\)
\(\mathrm{f}^{\prime}(0)=\frac{1}{2}\)
Put y = 0
\(f(x)=f(x) f^{\prime}(0)+f^{\prime}(x) f(0)\)
\(f(x)=\frac{1}{2} f(x)+f^{\prime}(x)\)
\(f^{\prime}(x)=\frac{f(x)}{2}\)
\(\frac{d y}{d x}=\frac{y}{2} \Rightarrow \int \frac{d y}{y}=\int \frac{d x}{2}\)
\(\Rightarrow \ell ny =\frac{x}{2}+c\)
\(\because \mathrm{f}(0)=1 \Rightarrow \mathrm{C}=0\)
\(\ell ny =\frac{\pi}{2} \Rightarrow f(x)=e^{x / 2}\)
\(\ell n f(n)=\frac{n}{2}\)
\(\sum_{\mathrm{n}=1}^{100} \ell \mathrm{f}(\mathrm{n})=\frac{1}{2} \sum_{\mathrm{n}=1}^{100} \mathrm{n}=\frac{5050}{2}\)
=2525