Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.8k views
in Mathematics by (43.6k points)
closed by

If \(\int e^{x}\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}+\frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}}+\frac{x}{1-x^{2}}\right) d x=g(x)+C,\) where C is the constant of integration, then \(\mathrm{g}\left(\frac{1}{2}\right)\) equals :

(1) \(\frac{\pi}{6} \sqrt{\frac{e}{2}}\)

(2) \(\frac{\pi}{4} \sqrt{\frac{\mathrm{e}}{2}}\)

(3) \(\frac{\pi}{6} \sqrt{\frac{\mathrm{e}}{3}}\)

(4) \(\frac{\pi}{4} \sqrt{\frac{\mathrm{e}}{3}}\)

1 Answer

+1 vote
by (43.1k points)
selected by
 
Best answer

Correct option is (3) \(\frac{\pi}{6} \sqrt{\frac{\mathrm{e}}{3}}\) 

\(\because \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{x} \sin ^{-1} \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}\right)=\frac{\sin ^{-1} \mathrm{x}}{\left(1-\mathrm{x}^{2}\right)^{3 / 2}}+\frac{\mathrm{x}}{1-\mathrm{x}^{2}}\)

\(\Rightarrow \int e^{x}\left(\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}+\frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}}+\frac{x}{1-x^{2}}\right) d x\)

\(=e^{x} \cdot \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}+c=g(x)+C\)

Note : assuming \(g(x)=\frac{x e^{x} \sin ^{-1} x}{\sqrt{1-x^{2}}}\)

\(g(1 / 2)=\frac{\mathrm{e}^{1 / 2}}{2} \cdot \frac{\frac{\pi}{6} \times 2}{\sqrt{3}}=\frac{\pi}{6} \sqrt{\frac{\mathrm{e}}{3}}\)  

Comment : In this question we will not get a unique function \(\mathrm{g}(\mathrm{x}),\) but in order to match the answer we will have to assume g(x)=\(\frac{\mathrm{xe}^{\mathrm{x}} \sin ^{-1} \mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}}.\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...