Correct option is (4) 10
f(x) is continuous at x = 0,
\(\therefore \mathrm{f}\left(0^{-}\right)=\mathrm{f}(0) \)
\(\lim _{\mathrm{x} \rightarrow 0^{-}} \frac{2}{\mathrm{x}}\left[\sin \left(\mathrm{k}_1+1\right) \mathrm{x}+\sin \left(\mathrm{k}_2-1\right) \mathrm{x}\right] \)
\(\lim _{\mathrm{x} \rightarrow 0^{-}}\left[\frac{\sin \left(\mathrm{k}_1+1\right)}{\left(\mathrm{k}_1+1\right) \mathrm{x}} \times\left(\mathrm{k}_1+1\right)+\frac{\sin \left(\mathrm{k}_2-1\right)}{\left(\mathrm{k}_2-1\right) \mathrm{x}} \times\left(\mathrm{k}_2-1\right)\right]=2 \)
\({\left[\mathrm{k}_1+1+\mathrm{k}_2-1\right]=2} \)
\(\mathrm{k}_1+\mathrm{k}_2=2 \) ....(1)
\( \text { again, } \mathrm{F}\left(0^{+}\right)=\mathrm{F}(0) \)
\(\frac{2}{\mathrm{x}}\left[In 2\left(1+\frac{\mathrm{k}_1 \mathrm{x}}{2}\right)-In 2\left(1+\frac{\mathrm{k}_2 \mathrm{x}}{2}\right)\right]=4 \)
\(\frac{2}{\mathrm{x}}\left[In 2+In \left(1+\frac{\mathrm{k}_1 \mathrm{x}}{2}\right)-In 2-In \left(1+\frac{\mathrm{k}_2 \mathrm{x}}{2}\right)\right]=4 \)
\(\left[\left\{\frac{\ln \left(1+\frac{k_1 \mathrm{x}}{2}\right)}{\left(\frac{\mathrm{k}_1 \mathrm{x}}{2}\right)}\right\}, \frac{\mathrm{k}_1}{2}-\left(\frac{\ln \left(1+\frac{\mathrm{k}_2 \mathrm{x}}{2}\right)}{\left(\frac{\mathrm{k}_2 \mathrm{x}}{2}\right)}\right) \frac{\mathrm{k}_2}{2}\right]\)
\(\mathrm{k}_1-\mathrm{k}_2=4 \) ...(2)
Adding (1) + (2)
\(2 \mathrm{k}_1=6 \)
\(k_1=3 \Rightarrow k_2=-1\)
\(\therefore \mathrm{k}_1^2+\mathrm{k}_2^2=9+1=10\)