Correct option is : (2) \(\frac{\mu_1|R_1|.|R_2|}{\mu_2(|R_1| + |R_2|) - \mu_1|R_2|}\)

\(\frac{1}{f_{eq}} = \frac{2}{f_L} -\frac{1}{f_m}\)
\(f_m = -\frac{|R_2|}{2}\)
\(\frac{1}{f_L} = \left(\frac{\mu_2}{\mu_1} - 1\right)\left(\frac{1}{R_1}+
\frac{1}{R_2}\right)\)
\(\frac{1}{\mathrm{f}_{\text {eq }}}=2\left(\frac{\mu_{2}-\mu_{1}}{\mu_{1}}\right)\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1} \mathrm{R}_{2}}\right)+\frac{2}{\mathrm{R}_{2}}\)
\(
=\frac{2}{\mathrm{R}_{2}}\left[\frac{\left(\mu_{2}-\mu_{1}\right)\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)+\mu_{1} \mathrm{R}_{1}}{\mu_{1} \mathrm{R}_{1}}\right]\)
\(
=\frac{2}{R_{2}}\left[\frac{\mu_{2} R_{1}+\mu_{2} R_{2}-\mu_{1} R_{1}-\mu_{1} R_{2}+\mu_{1} R_{1}}{\mu_{1} R_{1}}\right]\)
\(
\frac{1}{\mathrm{f}_{\mathrm{eq}}}=\frac{2\left[\mu_{2} \mathrm{R}_{1}+\mu_{2} \mathrm{R}_{2}-\mu_{1} \mathrm{R}_{2}\right]}{\mu_{1} \mathrm{R}_{1} \mathrm{R}_{2}}\)
For same size of image
u = 2f
\(
u=\frac{\mu_{1} R_{1} R_{2}}{\mu_{2} R_{1}+\mu_{2} R_{2}-\mu_{1} R_{2}}\)