Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
1.7k views
in Mathematics by (44.2k points)
closed by

\(\lim\limits _{x \rightarrow 0} \operatorname{cosec} x\left(\sqrt{2 \cos ^{2} x+3 \cos x}-\sqrt{\cos ^{2} x+\sin x+4}\right)\) is

(1) 0

(2) \(\frac{1}{2 \sqrt{5}}\)

(3) \(\frac{1}{\sqrt{15}}\)

(4) \(-\frac{1}{2 \sqrt{5}}\)

1 Answer

+1 vote
by (44.6k points)
selected by
 
Best answer

Correct option is (4) \(-\frac{1}{2 \sqrt{5}}\)

\(\lim _{x \rightarrow 0} \operatorname{cosec x}\left(\sqrt{2 \cos ^{2} x+3 \cos x}-\sqrt{\cos ^{2} x+\sin x+4}\right)\)

\(\lim _{x \rightarrow 0} \frac{\operatorname{cosec} x\left(\cos ^{2} x+3 \cos x-\sin x-4\right)}{\left(\sqrt{2 \cos ^{2} x+3 \cos x}+\sqrt{\cos ^{2} x+\sin x+4}\right)}\)

\(\lim _{x \rightarrow 0} \frac{1}{\sin x} \frac{\left(\cos ^{2} x+3 \cos x-4\right)-\sin x}{\left(\sqrt{2 \cos ^{2} x+3 \cos x}+\sqrt{\cos ^{2} x+\sin x+4}\right)}\)

\(\lim _{x \rightarrow 0} \frac{(\cos x+4)(\cos x-1)-\sin x}{\sin x\left(\sqrt{2 \cos ^{2} x+3 \cos x}+\sqrt{\cos ^{2} x+\sin x+4}\right)}\)

\(\lim _{x \rightarrow 0} \frac{-2 \sin ^{2} \frac{x}{2}(\cos x+4)-2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}\left(\sqrt{2 \cos ^{2} x+3 \cos x}+\sqrt{\cos ^{2} x+\sin x+4}\right)}\)

\(\lim _{x \rightarrow 0} \frac{-\left(\sin \frac{x}{2}(\cos x+4)+\cos \frac{x}{2}\right)}{\cos \frac{x}{2}\left(\sqrt{2 \cos ^{2} x+3 \cos x}+\sqrt{\cos ^{2} x+\sin x+4}\right)}\)

\(-\frac{1}{2 \sqrt{5}}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...