Correct option is : (1) \(\frac{\lambda_{0}}{\sqrt{1+\frac{\mathrm{e}^{2} \mathrm{E}_{0}^{2} \mathrm{t}^{2}}{\mathrm{~m}^{2} \mathrm{v}_{0}^{2}}}}\)
\(\vec{\mathrm{v}}=\mathrm{v}_{0} \hat{\mathrm{i}}-\frac{\mathrm{E}_{0} \mathrm{e}}{\mathrm{m}} t \hat{\mathrm{k}}\)
\(|\vec{\mathrm{v}}|=\sqrt{\mathrm{v}_{0}^{2}+\frac{\mathrm{E}_{0}^{2} \mathrm{e}^{2} \mathrm{t}^{2}}{\mathrm{~m}^{2}}}\)
\(
\lambda_{0}=\frac{\mathrm{h}}{\mathrm{mv}_{0}}\)
\(
\lambda^{\prime}=\frac{h}{\operatorname{mv}_{0} \sqrt{1+\frac{\mathrm{E}_{0}^{2} \mathrm{e}^{2} \mathrm{t}^{2}}{\mathrm{v}_{0}^{2} \mathrm{~m}^{2}}}}\)
\(\lambda^{\prime}=\frac{\lambda_{0}}{\sqrt{1+\frac{\mathrm{E}_{\mathrm{0}}^{2} \mathrm{e}^{2} \mathrm{t}^{2}}{\mathrm{v}_{0}^{2} \mathrm{~m}^{2}}}}\)