Correct option is (2) \(3 a_{100}-100\)
\(a_{0}=0, a_{1}=\frac{1}{2}\)
\(2 \mathrm{a}_{\mathrm{n}+2}=5 \mathrm{a}_{\mathrm{n}+1}-3 \mathrm{a}_{\mathrm{n}}\)
\(x^{2}-5 x+3=0 \Rightarrow x=1,3 / 2\)
\(\therefore \mathrm{a}_{\mathrm{n}}=\mathrm{A}(1)^{\mathrm{n}}+\mathrm{B}\left(\frac{3}{2}\right)^{\mathrm{n}}\)
\(\left.\begin{array}{ll}\mathrm{n}=0 & 0=\mathrm{A}+\mathrm{B} \\ \mathrm{n}=1 & \frac{1}{2}=\mathrm{A}+\frac{3}{2} \mathrm{~B}\end{array}\right] \begin{aligned} & \mathrm{A}=-1 \\ & \mathrm{~B}=1\end{aligned}\)
\(\Rightarrow \mathrm{a}_{\mathrm{n}}=-1+\left(\frac{3}{2}\right)^{\mathrm{n}}\)
\(\sum\limits_{k=1}^{100} a_{k}=\sum\limits_{k=1}^{100}(-1)+\left(\frac{3}{2}\right)^{k}\)
\(=-100+\frac{\left(\frac{3}{2}\right)\left(\left(\frac{3}{2}\right)^{100}-1\right)}{\frac{3}{2}-1}\)
\(=-100+3\left(\left(\frac{3}{2}\right)^{100}-1\right)\)
\(3 .\left(\mathrm{a}_{100}\right)-100\)