Correct option is (1) 11
\(\int\limits_0^2 x F^{\prime}(x)=6\)
\({\left[F^{\prime}(x) \cdot \frac{x^2}{2}\right]_0^2-\int\limits_0^2 F^{\prime \prime}(x) \cdot \frac{x^2}{2} d x=6} \)
\( 2 F^{\prime}(2)=26 \Rightarrow F^{\prime}(2)=13\)
Given: \(F(x)=x f(x)\)
\(F^{\prime}(x)=x f'(x)+f(x) \)
\(\text { Put } x=2 \)
\(F^{\prime}(2)=2 f(2)+f(2) \)
\( f(2)=6\)
\(\text { As } \int\limits_0^2 x F^{\prime}(x)=6\)
\(\Rightarrow [x F(x)]_0^2-\int\limits_0^2 F(x) d x=6\)
\(\Rightarrow \int_0^2 F(x) d x=-2\)
\(\therefore F^{\prime}(2)+\int\limits_0^2 F(x) d x=13-2=11\)