Correct option is (1) 30
As f(x) is onto hence A is range of f(x)
now \(f^{\prime}(x)=6 x^{2}-30 x+36\)
\(=6(x-2)(x-3) \)
\(f(2) =16-60+72+7=35\)
\(\mathrm{f}(3)=54-135+108+7=34\)
f(0) = 7
hence range \(\in[7,35]=\mathrm{A}\)
also for range of g(x)
\(g(x)=1-\frac{1}{x^{2025}+1} \in[0,1)=B\)
\(\mathrm{s}=\{0,7,8, \ldots . .35\}\) hence \(\mathrm{n}(\mathrm{s})=30\)