The position vector of a moving body at any instant of time is given as \(\vec{\mathrm{r}}=\left(5 \mathrm{t}^{2} \hat{\mathrm{i}}-5 \mathrm{t} \hat{\mathrm{j}}\right) \mathrm{m}\). The magnitude and direction of velocity at \(\mathrm{t}=2 \mathrm{s}\) is,
(1) \(5 \sqrt{15} \mathrm{~m} / \mathrm{s}\), making an angle of \(\tan ^{-1} 4\) with -ve Y axis
(2) \(5 \sqrt{15} \mathrm{~m} / \mathrm{s}\), making an angle of \(\tan ^{-1} 4\) with +ve X axis
(3) \(5 \sqrt{17} \mathrm{~m} / \mathrm{s}\), making an angle of \(\tan ^{-1} 4\) with -ve Y axis
(4) \(5 \sqrt{17} \mathrm{~m} / \mathrm{s}\), making an angle of \(\tan ^{-1} 4\) with +ve X axis