Correct option is (1) 283
\((a+b)^{\frac{1}{2}}\)
\(\mathrm{T}_{\mathrm{r}}, \mathrm{T}_{\mathrm{r}+1}, \mathrm{~T}_{\mathrm{r}+2} \rightarrow \mathrm{GP}\)
So, \(\frac{T_{r+1}}{T_{r}}=\frac{T_{r+2}}{T_{r+1}}\)
\(\frac{{ }^{12} \mathrm{C}_{\mathrm{r}}}{{ }^{12} \mathrm{C}_{\mathrm{r}-1}}=\frac{{ }^{12} \mathrm{C}_{\mathrm{r}+1}}{{ }^{12} \mathrm{C}_{\mathrm{r}}}\)
\(\frac{12-\mathrm{r}+1}{\mathrm{r}}=\frac{12-(\mathrm{r}+1)+1}{\mathrm{r}+1}\)
(13 - r) (r + 1) = (12 - r) (r)
\(-\mathrm{r}+12 \mathrm{r}+13=12 \mathrm{r}-\mathrm{r}^{2}\)
13=0
No value of r possible
So \(\mathrm{P}=0\)
\(\left(3^{\frac{1}{4}}+4^{\frac{1}{3}}\right)^{12}=\sum{ }^{12} \mathrm{C}_{\mathrm{r}}\left(3^{\frac{1}{4}}\right)^{12-\mathrm{r}}\left(4^{\frac{1}{3}}\right)^{\mathrm{r}}\)
Exponent of \(\left(3^{\frac{1}{4}}\right)\) exponent of \(\left(4^{\frac{1}{3}}\right)\) term
q = 27 + 256 = 283
p + q = 0 + 283 = 283