Answer: (3) 8
\( A : \log _{2 \pi}|\sin x|+\log _{2 \pi}|\cos x|=2\)
\(\Rightarrow \log _{2 \pi}(|\sin x . \cos x|)=2\)
\(\Rightarrow|\sin 2 \mathrm{x}|=\frac{8}{\pi^{2}}\)

Number of solution 4
\(B : let \ \sqrt{\mathrm{x}}=\mathrm{t}<2\)
Then \(\sqrt{\mathrm{x}}(\sqrt{\mathrm{x}}-4)+3(\sqrt{\mathrm{x}}-2)+6=0\)
\(\Rightarrow \mathrm{t}^{2}-4 \mathrm{t}+3 \mathrm{t}-6+6=0\)
\(\Rightarrow \mathrm{t}^{2}-\mathrm{t}=0, \mathrm{t}=0, \mathrm{t}=1\)
\(\mathrm{x}=0, \mathrm{x}=1\)
again let \(\sqrt{\mathrm{x}}=\mathrm{t}>2\)
then \(\mathrm{t}^{2}-4 \mathrm{t}-3 \mathrm{t}+6+6=0\)
\(\Rightarrow \mathrm{t}^{2}-7 \mathrm{t}+12=0\)
\(\Rightarrow \mathrm{t}=3,4\)
\(\mathrm{x}=9,16\)
Total number of solutions
\(\mathrm{n}(\mathrm{A} \cup \mathrm{B})=4+4=8\)