Correct option is : (2) \(\frac{I_{0}}{4}\)
Incident amplitude is \(A_0\) then
\(I_0 \propto A_0^2\)
Now, path difference is \(\frac{\lambda }{3}\) so phase difference is \(\frac{2\pi }{2}\)
\(A^2 = A_1^2 + A_2^2 + 2A_1A_2\ cos \theta \)
\( = \frac{A_0^2}{4} + \frac{A_0^2}{4} + 2\frac{A_0^2}{4}.\cos (\frac{2 \pi}{3})\)
\(\Rightarrow A^2 = \frac{A_0^2}{4}\)
so, \(I = \frac{I_0}{4}\)