Correct option is (1) (8, 26, 12)
\(L_{1}: \overrightarrow{\mathrm{r}}=(-\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}+2 \hat{j}+\hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{r}}=(\lambda-1) \hat{\mathrm{i}}+2(\lambda+1) \hat{\mathrm{j}}+(\lambda+1) \hat{\mathrm{k}}\)
\(L_{2}: \overrightarrow{\mathrm{r}}=(\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})\)
\(\Rightarrow \overrightarrow{\mathrm{r}}=2 \mu \hat{\mathrm{i}}+(1+7 \mu) \hat{\mathrm{j}}+(1+3 \mu) \hat{\mathrm{k}}\)
For point of intersection equating respective components
\(\Rightarrow \lambda-1=2 \mu\) .....(1)
\(2(\lambda+1)=1+7 \mu\) .....(2)
\(\lambda+1=1+3 \mu\) .....(3)
We get
\(\Rightarrow \lambda=3\) and \(\mu=1\)
\(\Rightarrow \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\)
\(L_{3}: \vec{r}=2 \hat{i}+8 \hat{j}+4 \hat{k}+\alpha(3 \hat{i}+9 \hat{j}+4 \hat{k})\)
For \(\alpha=2, \overrightarrow{\mathrm{r}}=8 \hat{\mathbf{i}}+26 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}\)