Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
3.2k views
in Mathematics by (44.6k points)
closed by

Let \(\vec{a}=\hat{i}+2 \hat{j}+\hat{k}\) and \(\vec{b}=2 \hat{i}+7 \hat{j}+3 \hat{k}.\) Let

\(L_{1}: \overrightarrow{\mathrm{r}}=(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda \overrightarrow{\mathrm{a}}, \lambda \in \mathrm{R}\) and

\(L_{2}: \vec{r}=(\hat{j}+\hat{k})+\mu \vec{b}, \mu \in R\) be two lines. If the line \(L_{3}\) passes through the point of intersection of \(L_{1}\) and \(L_{2}\), and is parallel to \(\vec{a}+\vec{b},\) then \(L_{3}\) passes through the point:

(1) (8, 26, 12)

(2) (2, 8, 5)

(3) (-1, -1, 1)

(4) (5, 17, 4)

1 Answer

+1 vote
by (44.2k points)
selected by
 
Best answer

Correct option is (1) (8, 26, 12) 

\(L_{1}: \overrightarrow{\mathrm{r}}=(-\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}+2 \hat{j}+\hat{k})\)

\(\Rightarrow \overrightarrow{\mathrm{r}}=(\lambda-1) \hat{\mathrm{i}}+2(\lambda+1) \hat{\mathrm{j}}+(\lambda+1) \hat{\mathrm{k}}\)

\(L_{2}: \overrightarrow{\mathrm{r}}=(\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})\)

\(\Rightarrow \overrightarrow{\mathrm{r}}=2 \mu \hat{\mathrm{i}}+(1+7 \mu) \hat{\mathrm{j}}+(1+3 \mu) \hat{\mathrm{k}}\)

For point of intersection equating respective components

\(\Rightarrow \lambda-1=2 \mu\)   .....(1)

\(2(\lambda+1)=1+7 \mu\)     .....(2)

\(\lambda+1=1+3 \mu\)      .....(3)

We get

\(\Rightarrow \lambda=3\) and \(\mu=1\)

\(\Rightarrow \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\)

\(L_{3}: \vec{r}=2 \hat{i}+8 \hat{j}+4 \hat{k}+\alpha(3 \hat{i}+9 \hat{j}+4 \hat{k})\)

For \(\alpha=2, \overrightarrow{\mathrm{r}}=8 \hat{\mathbf{i}}+26 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}\)  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...