Correct option is (3) 25
DR's of \( L_{3}=\overrightarrow{\mathrm{m}} \times \overrightarrow{\mathrm{n}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & -1 & 2 \\ -1 & 2 & 1\end{array}\right|\)
\(=-5 \hat{i}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}\)
\(L_{3}: \frac{x-\alpha}{-5}=\frac{y-\beta}{-3}=\frac{z-\gamma}{1}=\lambda\)
\(\mathrm{A}(\alpha-5 \lambda, \beta-3 \lambda, \gamma+\lambda)\)
\(\mathrm{L}_{1}: \frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}-2}{-1}=\frac{\mathrm{z}-1}{2}=\mathrm{k}\)
\(\mathrm{B}(\mathrm{k}+1,-\mathrm{k}+2,2 \mathrm{k}+1)\)
Now
\( \alpha-5 \lambda=\mathrm{k}+1 \Rightarrow \alpha=5 \lambda+\mathrm{k}+1 \)
\(\beta-3 \lambda=-\mathrm{k}+2 \Rightarrow \beta=3 \lambda-\mathrm{k}+2 \)
\(\gamma+\lambda=2 \mathrm{k}+1 \Rightarrow \gamma=-\lambda+2 \mathrm{k}+1 \)
\( |5 \alpha-11 \beta-8 \gamma|=|-25| \)
= 25