Answer is: 24
\(\lim _{x \rightarrow 0^{+}}\left(x\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\ldots+\left[\frac{p}{x}\right]\right)-x^2\left(\left[\frac{1}{x^2}\right]+\left[\frac{2^2}{x^2}\right]+\ldots+\left[\frac{9^2}{x^2}\right]\right) \geq 1 \)
\(\Rightarrow(1+2+3+\ldots+p)-\left(1^2+2^2+\ldots+9^2\right) \geq 1 \)
\(\Rightarrow \frac{p(p+1)}{2}-\frac{9(10)(19)}{6} \geq 1 \)
\( \Rightarrow p(p+1) \geq 572 \)
\(\Rightarrow \text { Least natural values of } p \text { is } 24\)