Correct option is (4) 6
Bag 1 \(=\{4 \mathrm{W}, 5 \mathrm{B}\}\)
Bag 2 \(=\{\mathbf{n W}, \mathbf{3 B}\}\)
\(\mathrm{P}\left(\frac{\mathrm{W}}{\mathrm{Bag} \ 2}\right)=\frac{29}{45}\)
\(\Rightarrow \mathrm{P}\left(\frac{\mathrm{W}}{\mathrm{B}_{1}}\right) \times \mathrm{P}\left(\frac{\mathrm{W}}{\mathrm{B}_{2}}\right)+\mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{B}_{1}}\right) \times \mathrm{P}\left(\frac{\mathrm{W}}{\mathrm{B}_{2}}\right)=\frac{29}{45}\)
\(\frac{4}{9} \times \frac{n+1}{n+4}+\frac{5}{9} \times \frac{n}{n+4}=\frac{29}{45}\)
n = 6