Correct option is : (4) \(a\mathrm{e}^{\frac{-4 \pi m v_{0}}{\mathrm{q} \mathrm{\mu}_0\mathrm{I}}}\)
\(\mathrm{A} \rightarrow \mathrm{B}\)
\(\vec{V}=-v_{x} \hat{i}+v_{y} \hat{j}\)
\(\vec{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}(-\hat{\mathrm{k}})\)
\(\vec{\mathrm{F}}=\mathrm{q}(\vec{\mathrm{v}} \times \vec{\mathrm{B}})=\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{r}}\left[-\mathrm{v}_{\mathrm{x}} \hat{\mathrm{j}}-\mathrm{v}_{\mathrm{y}} \hat{\mathrm{i}}\right]\)
\(\mathrm{a}_{\mathrm{x}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{m}} \cdot \frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{r}}\)
\(a_{y}=-\frac{\mu_{0} I q}{2 \pi m} \cdot \frac{v_{x}}{r}\)
\(\frac{\mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}}{\mathrm{dr}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{m}} \frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{r}}\)
\(\frac{\mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}}{\mathrm{v}_{\mathrm{y}}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{m}} \frac{\mathrm{dr}}{\mathrm{r}}\)
\(\int\limits_0^{v_0} \frac{v_xdv_x}{\sqrt{v_0^2 - v_x^2}} = - \frac{\mu_0Iq}{2\pi m} \int\limits_a^{x_1} \frac{dr}{r}\)
\( Let, \ z^{2}=v_{0}{ }^{2}-v_{x}{ }^{2}\)
\(2 \mathrm{zdz}=-2 \mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}\)
\(z d z=-v_{x} d_{x}\)
\(\frac{\mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}}{\sqrt{\mathrm{v}_{0}^{2}-\mathrm{v}_{\mathrm{x}}^{2}}}=\frac{-\mathrm{zdz}}{\mathrm{z}}=-\mathrm{dz}\)
then integral becomes
\(-\int\limits_{\mathrm{v}_{0}}^{0} \mathrm{dz}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{m}} \ln \frac{\mathrm{x}_{1}}{\mathrm{a}}\)
\(\mathrm{v}_{0}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{m}} \ln \frac{\mathrm{x}_{1}}{\mathrm{a}}\)
\(\mathrm{X}_{1}=\mathrm{a} \mathrm{e}^{-\frac{2 \pi \mathrm{mv}_{0}}{\mu_{0} \mathrm{Iq}}}\ ...(1)\)
For \(\mathrm{B} \rightarrow \mathrm{C}\)
\(\vec{v}=-v_{x} \hat{i}-v_{y} \hat{j}\)
\(\vec{\mathrm{B}}=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}(-\hat{\mathrm{k}})\)
\(\vec{F}=q(\vec{v} \times \vec{B})=\frac{\mu_{0} I q}{2 \pi r}\left(-v_{x} \hat{j}+v_{y} \hat{i}\right)\)
\( \mathrm{a}_{\mathrm{x}}=+\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{m}} \frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{r}} \quad \mathrm{a}_{\mathrm{y}}=-\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{~m}} \cdot \frac{\mathrm{v}_{\mathrm{x}}}{\mathrm{r}}\)
\(\frac{\mathrm{v}_{\mathrm{x}} \mathrm{dv}_{\mathrm{x}}}{\mathrm{dr}}=\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{m}} \frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{r}}\)
\( \int\limits_{v_{0}}^{0} \frac{v_{x} \mathrm{dv}_{\mathrm{x}}}{\sqrt{\mathrm{v}_{0}^{2}-\mathrm{v}_{\mathrm{x}}^{2}}}=\frac{\mu_{0} \mathrm{Iq}}{2 \pi m} \int\limits_{\mathrm{x}_{1}}^{\mathrm{x}} \frac{\mathrm{dr}}{\mathrm{r}}\)
\(\frac{\mu_{0} \mathrm{Iq}}{2 \pi \mathrm{m}} \ln \frac{\mathrm{x}}{\mathrm{x}_{1}}=-\int\limits_{0}^{\mathrm{v}_{0}} \mathrm{dz}=-\mathrm{v}_{0}\)
\(\mathrm{x}=\mathrm{x}_{1} \mathrm{e}^{-\frac{2 \pi \mathrm{mv}_{0}}{\mu_{0} \mathrm{I} \mathrm{q}}} \ldots (2)\)
From equation 1 and 2
\(X=a e^{-\frac{4 \pi \mathrm{mv}_{0}}{\mu_{0} \mathrm{I}_{\mathrm{q}}}}\)